Square-free OM computation of global integral bases

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of integral bases

Let A be a Dedekind domain, K the fraction field of A, and f ∈ A[x] a monic irreducible separable polynomial. For a given non-zero prime ideal p of A we present in this paper a new method to compute a p-integral basis of the extension of K determined by f . Our method is based on the use of simple multipliers that can be constructed with the data that occurs along the flow of the Montes Algorit...

متن کامل

Bases and Nonbases of Square-Free Integers

A basis is a set A of nonnegative integers such that every sufficiently large integer n can be represented in the form n = a + a i with a , ai e A . If A is a basis, but no proper subset of A is a basis, then A is a minimal basis . A nonbasis is a set of nonnegative integers that is not a basis, and a nonbasis A is maximal if every proper superset of A is a basis . In this paper, minimal bases ...

متن کامل

Efficient computation of square-free Lagrange resolvents

We propose a general frame to compute efficiently in the invariant algebra k[X1, . . . , Xn] , whereH is a finite subgroup of the general linear groupGLn(k). The classical Noether normalization of this Cohen-Macaulay algebra takes a natural form when expressed with adequate data structures, based on evaluation rather than writing. This allows to compute more efficiently its multiplication tenso...

متن کامل

Computation of bases of free modules over the Weyl algebras

A well-known result due to J. T. Stafford asserts that a stably free left module M over the Weyl algebras D = An(k) or Bn(k) − where k is a field of characteristic 0 − with rankD(M) ≥ 2 is free. The purpose of this paper is to present a new constructive proof of this result as well as an effective algorithm for the computation of bases of M . This algorithm, based on the new constructive proofs...

متن کامل

Explicit Construction of Self-Dual Integral Normal Bases for the Square-Root of the Inverse Different

Let K be a finite extension of Qp, let L/K be a finite abelian Galois extension of odd degree and let OL be the valuation ring of L. We define AL/K to be the unique fractional OL-ideal with square equal to the inverse different of L/K. For p an odd prime and L/Qp contained in certain cyclotomic extensions, Erez has described integral normal bases for AL/Qp that are self-dual with respect to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra & Number Theory

سال: 2022

ISSN: ['1944-7833', '1937-0652']

DOI: https://doi.org/10.2140/ant.2022.16.1327